Abstract

In view of the increasing development of decentralized power systems and electric vehicles, this paper seeks to improve the energy management performance of multiple microgrid systems under the uncertainty associated with electric vehicle charging. A multi-objective optimization model is established for minimizing the transmission losses, operating costs, and carbon emissions of multiple microgrid systems. Firstly, a novel method is proposed for forecasting electric vehicle charging loads based on a back propagation neural network improved by long short-term memory deep learning. Based on the forecast data, a double layer solution algorithm is proposed, which consists of an adaptive multi-objective evolutionary algorithm based on decomposition and differential evolution at the multiple microgrids layer and a modified consistency algorithm for fast economic scheduling at the single microgrid layer. Finally, a model system composed of four interconnected IEEE microgrids is simulated as a case study, and the performance of the proposed algorithm is compared with that of conventional multi-objective evolutionary algorithms based on decomposition. The simulation results demonstrate the superiority of the global search performance and the rapid convergence performance of the proposed improved algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.