Abstract

This study focuses on multi-objective performance-based seismic optimization of steel moment frames by an efficient algorithm. In the present study, an efficient framework is developed to find a Pareto front for multi-objective optimization problem of steel moment frames involving global damage index and initial cost as two conflicting objective functions. To this end, a new multi-objective algorithm is introduced and its efficiency is demonstrated trough a set of benchmark multi-objective truss design examples. Subsequently, a 6- and a 12-story steel moment frame are designed by the proposed algorithm. To evaluate the seismic performance and collapse capacity of the optimal designs, damage indices and incremental dynamic analysis are used and their seismic damage costs and adjusted collapse margin ratios are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.