Abstract

This paper presents, for the first time, the application of the strength Pareto evolutionary algorithm to the multi-objective design of isolated hybrid systems, minimising both the total cost throughout the useful life of the installation and the unmet load. For this task, a multi-objective evolutionary algorithm (MOEA) and a genetic algorithm (GA) have been used in order to find the best combinations of components for the hybrid system and control strategy. Also, a novel control strategy has been developed and it will be expounded in this article. As an example of application, a PV–wind–diesel system has been designed, obtaining a set of possible solutions (Pareto set) from which the designer can choose those which he/she prefers considering the costs and unmet load of each. The results obtained demonstrate the practical utility of the design method used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.