Abstract
Thin-walled tubes are extensively used in the automotive industry because of their high energy absorption capacity and lightweight advantages. These structures are expected to have high energy absorption and low peak force during any collision. In this study, to obtain low peak crushing force, different wall lengths have applied to the thin-walled tubes. Different wall lengths have investigated using doubly-walled walled, inner multi-cell walled and multi-cell walled tubes obtained from square, hexagon, octagon and circle cross-sections. To evaluate crashworthiness performance dynamic impact analyses at a constant velocity are carried out using the non-linear explicit Finite Element (FE) code Radioss. According to the FE results, tubes with different wall lengths give lower peak crushing force (PCF) of up to 36% compared to normal tubes. On the other hand, in tubes with different wall lengths, there is a decrease of up to 6% in specific energy absorption (SEA) compared to normal tubes. Thus, considering the decrease of the PCF, the advantage of tubes with different wall lengths is presented. Optimization studies have carried out for the second type octagonal tube with different wall lengths (O2G) and the third type octagonal tube with different wall lengths (O3G) which give better SEA and PCF values between all tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.