Abstract

ABSTRACTThis article investigates multi-objective optimization of the robot trajectories and position-based operation-coordination of complex multi-robot systems, such as press lines, to improve the production rate and obtaining smooth motions to avoid excessive wear of the robots' components. Different functions for handling the multiple objectives are evaluated on real-world press lines, including both scalarizing single-objective functions and Pareto-based multi-objective functions. Additionally, the Multi-Objective Constructive Cooperative Coevolutionary () algorithm is proposed, for Pareto-based optimization, which uses a novel constructive initialization of the subpopulations in a co-adaptive fashion. It was found that Pareto-based optimization performs better than the scalarizing single-objective functions. Furthermore, gives substantially better results compared to manual online tuning, as currently used in the industry. Optimizing robot trajectories and operation-coordination of complex multi-robot systems using the proposed method with significantly improves productivity and reduces maintenance. This article hereby addresses the lack of systematic methods for effectively improving the productivity of press lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.