Abstract

This paper discusses a solution procedure of a multi-objective capacitated transportation problem (MOCTP) in an uncertain environment. In MOCTP, the primary objective is to find the optimum quantity of the shipment subject to some capacitated restriction on each route. Due to uncertainty in MOCTP, the formulated problem cannot be solved directly for the optimum allocation. The uncertainty in MOCTP has been presented by the multi-choices and probabilistic distributions, respectively. The multi-choice and probabilistic distributions have been transformed into an equivalent deterministic form using the binary variable and stochastic programming approach, respectively. It has been assumed that the demand and supply parameter of the formulated problem follows different kinds of probabilistic distributions, namely, Pareto, Weibull, Normal, Extreme value, Cauchy and Logistic distribution, respectively. The maximum likelihood estimation approach has been used to estimate the unknown parameters of the probabilistic distributions with specified probability level. Finally, Akaike’s information criterion and Bayesian information criterion have been used to identify the goodness-of-fit of probability distributions for the given scenarios. The fuzzy goal-programming technique has been used to obtain the best optimum compromise solution for an equivalent crisp MOCTP model. A case study has been given to illustrate the computational procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.