Abstract

Although various clustering algorithms have been proposed, most of them cannot handle arbitrarily shaped clusters with varying density and depend on the user-defined parameters which are hard to set. In this paper, to address these issues, the authors propose an automatic neighborhood-based clustering approach using an extended multi-objective artificial bee colony (NBC-MOABC) algorithm. In this approach, the ABC algorithm is used as a parameter tuning tool for the NBC algorithm. NBC-MOABC is parameter-free and uses a density-based solution encoding scheme. Furthermore, solution search equations of the standard ABC are modified in NBC-MOABC, and a mutation operator is used to better explore the search space. For evaluation, two objectives, based on density concepts, have been defined to replace the conventional validity indices, which may fail in the case of arbitrarily shaped clusters. Experimental results demonstrate the superiority of the proposed approach over seven clustering methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.