Abstract

Source optimization (SO) is an extensively used resolution enhancement technique in optical lithography. To improve computational efficiency, compressive sensing (CS) theory was applied to SO for clip-level applications in previous works. We propose, for the first time to our knowledge, a multi-objective adaptive SO (adaptive-MOSO) with CS for full chip. The fast optimization of a pixel illumination source pattern is achieved, and the imaging fidelity of each clip is guaranteed simultaneously at full chip. Fast CS with contour sampling is applied to accelerate the SO procedure by sampling all layout patterns. Novel cost function with adaptive weight distribution for every single clip is established to guarantee the lithography imaging fidelity for full chip. The simulation results prove that the adaptive-MOSO method improves the efficiency of SO and the lithography performance for large-scale chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.