Abstract
In this paper, an adaptive cruise control system with a hierarchical control structure is designed. The upper-level controller is a model predictive controller (MPC) that by minimizing an objective function in the presence of the constraints, calculates the desired acceleration as control input and sends it to the lower-level controller. So the lower-level controller, which is a fuzzy controller, determines the amount of throttle valve opening or brake pressure to get the car to this desired acceleration. The model predictive controller performs optimization at each control step to minimize the objective function and achieve the reference values. Usually, the objective function has predetermined and constant weights to meet objectives such as maintain the driver’s desired speed and increase safety and in some cases increase comfort and reduce fuel consumption. In this paper, it is suggested that instead of using constant weights in the objective function, these weights should be determined by a fuzzy controller, depending on the different conditions in which the car is placed. The simulation results show that the variability of the weights of the objective function achieves control objectives much better than the optimization of the objective function with constant weights.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.