Abstract

This article addresses the problem of converting a single-objective combinatorial problem into a multi-objective one using the Pareto front approach. Although existing algorithms can identify the optimal solution in a multi-objective space, they fail to satisfy constraints while achieving optimal performance. To address this issue, we propose a multi-objective artificial bee colony optimization algorithm with a classical multi-objective theme called fitness sharing. This approach helps the convergence of the Pareto solution set towards a single optimal solution that satisfies multiple objectives. This article introduces multi-objective optimization with an example of a non-dominated sequencing technique and fitness sharing approach. The experimentation is carried out in MATLAB 2018a. In addition, we applied the proposed algorithm to two different real-time datasets, namely the knapsack problem and the nurse scheduling problem (NSP). The outcome of the proposed MBABC-NM algorithm is evaluated using standard performance indicators such as average distance, number of reference solutions (NRS), overall count of attained solutions (TNS), and overall non-dominated generation volume (ONGV). The results show that it outperforms other algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.