Abstract

<p>Vison based tracking in aerial images has its own significance in the areas of both civil and defense applications. A novel algorithm called aerial tracking learning detection which works on the basis of the popular tracking learning detection algorithm to effectively track single and multiple objects in aerial images is proposed in this study. Tracking learning detection (TLD) considers both appearance and motion features for tracking. It can handle occlusion to certain extent, and can work well on long duration video sequences. However, when objects are tracked in aerial images taken from platforms like unmanned air vehicle, the problems of frequent pose change, scale and illumination variations arise adding to low resolution, noise and jitter introduced by motion of the camera. The proposed algorithm incorporates compensation for the camera movement, algorithmic modifications in combining appearance and motion cues for detection and tracking of multiple objects and enhancements in the form of inter object distance measure for improved performance of the tracker when there are many identical objects in proximity. This algorithm has been tested on a large number of aerial sequences including benchmark videos, TLD dataset and many classified unmanned air vehicle sequences and has shown better performance in comparison to TLD.</p><p> </p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.