Abstract

Identifying disease-related metabolites is of great significance for the diagnosis, prevention, and treatment of disease. In this study, we propose a novel computational model of multiple-network logistic matrix factorization (MN-LMF) for predicting metabolite-disease interactions, which is especially relevant for new diseases and new metabolites. First, MN-LMF builds disease (or metabolite) similarity network by integrating heterogeneous omics data. Second, it combines these similarities with known metabolite-disease interaction networks, using modified logistic matrix factorization to predict potential metabolite-disease interactions. Experimental results show that MN-LMF accurately predicts metabolite-disease interactions, and outperforms other state-of-the-art methods. Moreover, case studies also demonstrated the effectiveness of the model to infer unknown metabolite-disease interactions for novel diseases without any known associations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call