Abstract

Various formulations of the equations of motion for both finite- and infinite-dimensional constrained Lagrangian dynamical systems are studied. The different formulations correspond to different ways of enforcing constraints through multiplier fields. All the formulations considered are posed on ambient spaces whose members are unrestricted by the need to satisfy constraint equations, but each formulation is shown to possess an invariant set on which the constraint equations and physical balance laws are satisfied. The stability properties of the invariant set within its ambient space are shown to be different in each case. We use the specific model problem of linearized incompressible elastodynamics to compare properties of three different ambient-space formulations. We establish the well-posedness of one formulation in the particular case of a homogeneous, isotropic body subject to specified tractions on its boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.