Abstract

With the development of artificial intelligence, the demand for brain-like intelligent devices capable of breaking the von Neumann bottleneck is growing. In light of the advantages of high speed, low power consumption, and high integration resulting from the combination of memory and underlying perception, the memristor has great potential for implementing bionic synapses and constructing artificial visual system. Herein, a Ga2O3/MoS2 heterojunction-based multi-modulated optoelectronic memristor (MMOM) is proposed and demonstrated. In response to specific electrical signals, the device empowers the emulation of synaptic functions including short/long-term plasticity and shows an adjustable modulation range through changing pulse parameters. Meanwhile, versatile optical signals are also able to evoke synaptic behaviors, for instance, the transition from short-term to long-term memory and the "learning-forgetting-relearning" function. Utilizing the excellent optical response, a 16 × 16 MMOM array is assembled to simulate the perception-memory integrated human visual system. Further, to optimize the static means of modulating bi-terminal visual synapses, a modulatory synapse exploiting varying positive and negative electrical signals is presented and validated. Predictably, a multi-signal engaged heterologous synapse can be constructed for the complex visual system, which greatly enriches the functionality of bionic synapses and offers the possibility to realize a dynamically tunable artificial visual system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.