Abstract

North Atlantic tropical cyclones (TCs) and hurricanes are responsible for a large number of fatalities and economic damage. Skillful seasonal predictions of the North Atlantic TC activity can provide basic information critical to our improved preparedness. This study focuses on the development of statistical–dynamical seasonal forecasting systems for different quantities related to the frequency and intensity of North Atlantic TCs. These models use only tropical Atlantic and tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by the observational records because they reflect the importance of both local and non-local effects on the genesis and development of TCs in the North Atlantic basin. A set of retrospective forecasts of SSTs by six experimental seasonal-to-interannual prediction systems from the North American Multi-Model Ensemble are used as covariates. The retrospective forecasts are performed over the period 1982–2015. The skill of these statistical–dynamical models is quantified for different quantities (basin-wide number of tropical storms and hurricanes, power dissipation index and accumulated cyclone energy) for forecasts initialized as early as November of the year prior to the season to forecast. The results of this work show that it is possible to obtain skillful retrospective forecasts of North Atlantic TC activity with a long lead time. Moreover, probabilistic forecasts of North Atlantic TC activity for the 2016 season are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.