Abstract

Multi-model techniques have shown an outstanding effectiveness in the cooperative task assignment and path planning of the unmanned combat aerial vehicle(UCAV) formation. With cooperative decision making and control, the cooperative combat of the UCAV formation are described and the mathematical model of the UCAV formation is built. Then, the task assignment model of the UCAV formation is developed according to flight characteristics of the UCAV formation and constraints in battlefield. The cooperative task assignment problem is solved using the improved particle swarm optimization(IPSO), ant colony algorithm(ACA) and genetic algorithm(GA) respectively. The comparative analysis is conducted in the aspects of the precision and the search speed. The path planning model of the UCAV formation is constructed considering the oil cost, threat cost, crash cost and time cost. The cooperative path planning problem is solved based on the evolution algorithm(EA), in which unique coding scheme of chromosomes is designed, and the crossover operator and mutation operator are redefined. Simulation results demonstrate that the UCAV formation can choose the best algorithm according to the real battlefield environment, which can solve the cooperative task assignment and path planning problems quickly and effectively to meet the demand of the cooperative combat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call