Abstract

Receiver function analysis and seismic tomography show tectonic structures dipping eastward in the mantle below the Cascadia volcanic arc (western US) that have been related to the subduction of the Gorda and Juan de Fuca oceanic micro-plates. Inconsistencies in the dip angle and depth extent of the slab between the two methods undermine the interpretation of the structure and processes at work. Receiver function imaging is biased by multiple reflection phases that interfere with converted phases, and produce spurious discontinuities in images. Here, we correct the interference using a multiple mode conversion imaging technique that efficiently removes artifacts under dipping structures. The method has the advantage of being applicable to large aperture arrays, and can image large-scale structures down to the transition zone. With this approach, the interfaces between the subducting and overriding plates and the oceanic Moho are imaged at shallow depths (<120 km) with a dip angle of ∼20°, consistently with former studies. In addition, several important features are imaged with the present method. Faint converters located between 100 and 400 km depth in the mantle wedge, and strong sub-horizontal seismic scatterers near 160 km depth, may highlight dehydration and metasomatism processes in the Cascadia subduction zone. A discontinuity located at ∼15 km depth in the lithospheric mantle of the subducted plates and associated with a negative impedance contrast is interpreted as the fossil fabric of the plates acquired at the spreading ridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call