Abstract
Sparse representation (SR) has been widely used in image fusion in recent years. However, source image, segmented into vectors, reduces correlation and structural information of texture with conventional SR methods, and extracting texture with the sliding window technology is more likely to cause spatial inconsistency in flat regions of multi-modality medical fusion image. To solve these problems, a novel fusion method that combines separable dictionary optimization with Gabor filter in non-subsampled contourlet transform (NSCT) domain is proposed. Firstly, source images are decomposed into high frequency (HF) and low frequency (LF) components by NSCT. Then the HF components are reconstructed sparsely by separable dictionaries with iterative updating sparse coding and dictionary training. In the process, sparse coefficients and separable dictionaries are updated by orthogonal matching pursuit (OMP) and manifold-based conjugate gradient method, respectively. Meanwhile, the Gabor energy as weighting factor is utilized to guide the LF components fusion, and this further improves the fusion degree of low-significant feature in the flat regions. Finally, the fusion components are transformed to obtain fusion image by inverse NSCT. Experimental results demonstrate the more competitive results of the proposal, leading to the state-of-art performance on both visual quality and objective assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.