Abstract

Multi-commodity rebalancing plays a critical role before and during the attack of large-scale disasters. In practice, some relief centers can be out of reach from the ground for vehicles due to the road disruption. Accordingly, alternative transportation systems are essential to maximize fairness and minimize the total transportation time, simultaneously. However, little study has reported on this issue for humanitarian logistics. To address it, a bi-objective stochastic optimization model is proposed to rebalance and transport commodities with the multi-modal transportation system. This work first linearizes the model and then applies an adaptive augmented E-constraint method to obtain a number of Pareto-optimal solutions. Furthermore, a case study of an emergency event is carried out, of which the computational results indicate its decision making effectiveness. Lastly, sensitivity analysis on critical parameters is conducted and the trade-off between the objectives is also analyzed to provide valuable managerial insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.