Abstract

Multi modal images need to be registered in order to use the unique information contained in these different modality images. In this paper, modifications on scale invariant feature transformation (SIFT), which is a popular method used for image matching, to improve its success on multi modal images are described. SIFT algorithm is immune to linear and partially immune to non-linear illumination changes. However, due to non linear illumination changes on multi-modal images, SIFT is not as powerful as it is on unimodal images. A method that modifies the feature orientations considering the differences of multi modal images is described, and then, the proposed method which works by narrowing the feature descriptor vector orientations is explained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.