Abstract
The neonatal period is a critical window for the development of the human brain and may hold implications for the long-term development of cognition and disorders. Multi-modal connectome studies have revealed many important findings underlying the adult brain but related studies were rare in the early human brain. One potential challenge is the lack of an appropriate and unbiased parcellation that combines structural and functional information in this population. Using 348 multi-modal MRI datasets from the developing human connectome project, we found that the information fused from the structural, diffusion, and functional MRI was relatively stable across MRI features and showed high reproducibility at the group level. Therefore, we generated automated multi-resolution parcellations (300 - 500 parcels) based on the similarity across multi-modal features using a gradient-based parcellation algorithm. In addition, to acquire a parcellation with high interpretability, we provided a manually delineated parcellation (210 parcels), which was approximately symmetric, and the adjacent areas around each boundary were statistically different in terms of the integrated similarity metric and at least one kind of original features. Overall, the present study provided multi-resolution and neonate-specific parcellations of the cerebral cortex based on multi-modal MRI properties, which may facilitate future studies of the human connectome in the early development period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.