Abstract

BackgroundCase-control studies in major depression have established numerous regional grey and white matter effects in fronto-limbic brain regions. Yet, brain structural studies of dimensional depressive psychopathology within the subclinical spectrum are still limited, in particular for multi-modal imaging approaches. MethodsUsing voxel-based and surface-based morphometry (cortical thickness) in combination with diffusion tensor imaging (DTI) in a large non-clinical sample (N = 300), we correlated grey and white matter structural variation with subclinical depressive symptoms assessed with Beck's Depression inventory (BDI). ResultsWe found a significant decrease of axial diffusivity associated with higher BDI scores in the left hippocampal part of the cingulum bundle (p < 0.05, threshold free cluster enhanced [TFCE] p-value) and some grey matter trend results e.g., a non-linear negative correlation of cortical thickness with depressive symptom load in the right pre/postcentral cortex (pFWE = 0.054, family wise error [FWE] peak level corrected) and a trend in grey matter volume decrease in women in the inferior frontal gyrus (pFWE = 0.054). LimitationsSince all grey matter effects disappear after FWE correction, we assume more stable effects in a larger, less homogenous sample enriched by help-seeking subjects covering a wider range of subclinical psychopathology. ConclusionOur study adds correlations between single depressive symptoms and brain structure to a growing literature. Since subclinical depression is increasingly recognised to be relevant in our understanding of manifest depression, early detection and identification of potential brain correlates of minor depressive symptoms has the potential to expand and reveal possible biomarkers and early psychological treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call