Abstract

Breast cancer is a highly lethal and aggressive form of cancer. Early-stager diagnosis and intraoperative guidance are important endeavors for reducing associated morbidity and mortality among breast cancer patients. Epithelial cell adhesion molecule (EpCAM) is aberrantly expressed in the majority of breast carcinoma, making it an attractive imaging biomarker. Herein, we have designed novel EpCAM-targeting peptides (denoted as YQ-S) for precise breast carcinoma detection. The greater binding affinity of the designed peptide YQ-S2 over YQ-S1 and the reported peptide SNF was displayed on different cell lines with flow cytometry analysis, showing a positive correlation with the expression of EpCAM. Besides, YQ-S2 displayed an ideal biosafety profile with no evidence of any acute toxicity. Thus, YQ-S2 was chosen to represent YQ-S. By linking with the near-infrared fluorescent dye (MPA), we further developed the EpCAM-targeting probe (YQ-S2-MPA) for real-time imaging and fluorescence-guided resection of breast cancer tumors. In vivo imaging of the MCF-7 tumor-bearing model demonstrated higher tumor uptake of YQ-S2-MPA compared with that of SNF-MPA. The maximum tumor-to-normal tissue signal ratio of YQ-S2-MPA was 5.1, which was about 2 times that of SNF-MPA. Meanwhile, the metastatic lesions in 4T1 lung metastasis, and lymph node metastasis (LNM) mice were successfully detected under this imaging system. Notably, YQ-S2-MPA had excellent performance in surgical navigation studies in the preclinical models. Moreover, we exploited the 99mTc-HYNIC-YQ-S2 to localize EpCAM positive tumors successfully. These data proved that YQ-S2 can distinguish EpCAM-positive orthotopic and metastatic tumors from surrounding normal tissues accurately, and possesses the clinical potential as a surgical navigation probe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.