Abstract
BackgroundMonitoring the body temperature of premature infants is vital, as it allows optimal temperature control and may provide early warning signs for severe diseases such as sepsis. Thermography may be a non-contact and wireless alternative to state-of-the-art, cable-based methods. For monitoring use in clinical practice, automatic segmentation of the different body regions is necessary due to the movement of the infant.MethodsThis work presents and evaluates algorithms for automatic segmentation of infant body parts using deep learning methods. Based on a U-Net architecture, three neural networks were developed and compared. While the first two only used one imaging modality (visible light or thermography), the third applied a feature fusion of both. For training and evaluation, a dataset containing 600 visible light and 600 thermography images from 20 recordings of infants was created and manually labeled. In addition, we used transfer learning on publicly available datasets of adults in combination with data augmentation to improve the segmentation results.ResultsIndividual optimization of the three deep learning models revealed that transfer learning and data augmentation improved segmentation regardless of the imaging modality. The fusion model achieved the best results during the final evaluation with a mean Intersection-over-Union (mIoU) of 0.85, closely followed by the RGB model. Only the thermography model achieved a lower accuracy (mIoU of 0.75). The results of the individual classes showed that all body parts were well-segmented, only the accuracy on the torso is inferior since the models struggle when only small areas of the skin are visible.ConclusionThe presented multi-modal neural networks represent a new approach to the problem of infant body segmentation with limited available data. Robust results were obtained by applying feature fusion, cross-modality transfer learning and classical augmentation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.