Abstract

As security is emphasized inside and outside the vehicle, research on driver identification technology using bio-signals is being actively studied. The bio-signals acquired by the behavioral characteristics of the driver include artifacts generated according to the driving environment, which could potentially degrade the accuracy of the identification system. Existing driver identification systems either remove the normalization process of bio-signals in the preprocessing stage or use artifacts included in a single bio-signals, resulting in low identification accuracy. To solve these problems in a real situation, we propose a driver identification system that converts ECG and EMG signals obtained from different driving conditions into 2D spectrograms through multi-TF image and uses multi-stream CNN. The proposed system consists of a preprocessing phase of ECG and EMG signals, a multi-TF image conversion process, and a driver identification stage using a multi-stream-based CNN. Under all driving conditions, the driver identification system reached an average accuracy of 96.8% and an F1 score of 0.973, which overperformed the existing driver identification systems by more than 1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.