Abstract

We develop a numerical model to explore the polarization-dependent compression of multi-mJ laser pulses in a gas-filled hollow fiber. We show how losses and instabilities due to cycling of pulse energy between fiber modes can be efficiently minimized using circularly polarized light and adjusting simple experimental parameters such as pulse energy, chirp and gas pressure. This should help scale the peak power of few-cycle pulses available for high-field experiments using standard hollow fiber compressors. We also discuss the limits of this approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call