Abstract
Multi MeV ions and fusion neutrons were generated by focused radiation of the 3 TW Prague Asterix Laser System (PALS). The use of 8 μm Al foil as XUV filter positioned in front of an ion collector allowed measuring currents of 4-MeV protons emitted behind a thin target in the forward direction. The proton energy of 4 MeV generated by a PALS laser irradiance Iλ2~5×1016 W cm-2 μm2 on target is nominally reachable for picosecond lasers when they deliver the intensity Iλ2~3×1018 W cm-2 μm2. The enhanced maximum proton energy is favoured by a non-linear interaction of the laser beam with the pre-generated plasma. Nonlinear processes also cause enhancement in the yield of fusion neutrons per focused laser energy from the CD2 plasma. The obtained results show that an equivalent neutron yield was reached by ps- and sub-ps laser beams for Iλ2~1019 W cm-2 μm2. The hampering influence of the electromagnetic pulse generated within the interaction chamber on diagnostics signals was eliminated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.