Abstract
We demonstrate laser-plasma acceleration of high charge electron beams to the ∼10 MeV scale using ultrashort laser pulses with as little energy as 10mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ∼0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wave breaking, which can radiate more than ∼3% of the laser energy in a ∼1 fs bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.