Abstract

Prior to an earthquake, natural seismicity is correlated across multiple spatial and temporal scales. Many studies have indicated that an earthquake is hard to accurately predict by a single time-dependent precursory method. In this study, we attempt to combine four earthquake prediction methods, i.e. the Pattern Informatics (PI), Load/Unload Response Ratio (LURR), State Vector (SV), and Accelerating Moment Release (AMR) to estimate future earthquake potential. The PI technique is founded on the premise that the change in the seismicity rate is a proxy for the change in the underlying stress. We first use the PI method to quantify localized changes surrounding the epicenters of large earthquakes to objectively quantify the anomalous areas (hot spots) of the upcoming events. Next, we delineate the seismic hazard regions by integrating with regional active fault zones and small earthquake activities. Then, we further evaluate the earthquake potential in the seismic hazard regions using the LURR, SV and AMR methods. Retrospective tests of this new approach on the large earthquakes (M > 6.5) which have occurred in western China over the last 3 years show that the LURR and SV time series usually climb to an anomalously high peak months to years prior to occurrence of a large earthquake. And, the asymptote time, tc, “predicted” by the AMR method correspond to the time of the actual events. The results may suggest that the multi-methods combined approach can be a useful tool to provide stronger constraints on forecasts of the time and location of future large events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.