Abstract

We have performed a multi-methodological theoretical study of impact of thermal vibrations on the Mössbauer effect in the tetragonal β-phase of tin. We have seamlessly combined (i) atomic-scale numerical data in the form of mean square displacements of Sn atoms determined by quantum-mechanical calculations, (ii) continuum-level thermodynamic modeling based on the quasi-harmonic approximation and (iii) theoretical analysis of Mössbauer effect resulting in the prediction of temperature dependence of Mössbauer factor. The computed results were compared with our Mössbauer and X-ray experimental data. We show that classical theoretical approaches based on simplistic Debye model of thermal vibrations of solids can be nowadays replaced by exact ab initio calculations of individual thermal vibrations. While both Debye and our approach slightly deviate from the experimental data, our suggested methodology bears promises for future improvement and a better agreement with measurements, i.e. the prospect that the over-simplified Debye model may not offer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call