Abstract
In the last few decades, underwater communication systems have been widely used for the development of navy, military, business, and safety applications, etc. However, in underwater communication systems, there are several challenging issues, such as limitations in bandwidth, propagation delay, 3D topology, media access control, routing, resource utilization, and power constraints. Underwater communication systems work under severe channel conditions such as ambient noise, frequency selectivity, multi-path and Doppler shifts. In order to collect and transmit the data in effective ways, multi-media/multi-band-based adaptation layer technology is proposed in this paper. The underwater communication scenario comprises of Unmanned Underwater Vehicles (UUVs), Surface gateways, sensor nodes, etc. The transmission of data starts from sensor nodes to surface gateway in a hierarchical manner through multiple channels. In order to provide strong and reliable communication underwater, the adaptation layer uses a multi-band/multi-media approach for transferring data. Hence, in this paper, existing techniques for splitting the band such as Orthogonal Frequency-Division Multiple Access (OFDMA), Frequency-Division Multiple Access (FDMA), or Orthogonal Frequency-Division Multiplexing (OFDM) are used for splitting the frequency band, and the medium selection mechanism is proposed to carry the signal through different media such as Acoustic, Visible Light Communication (VLC), and Infrared (IR) signals in underwater. For the channel selection mechanism, two phases are involved: 1. Finding the distance of near and far nodes using Manhattan method, and 2. Medium selection and data transferring algorithm for choosing different media.
Highlights
In an underwater constrained environment, existing communication mechanisms consist of single medium and single band technology for transferring data through wireless communication
Orthogonal Frequency-Division Multiple Access (OFDMA), Frequency-Division Multiple Access (FDMA), or Orthogonal Frequency-Division Multiplexing (OFDM) are used for splitting the frequency band, and the medium selection mechanism is proposed to carry the signal through different media such as Acoustic, Visible Light Communication (VLC), and Infrared (IR) signals in underwater
The OFDMA-based MAC protocol is constructed on the OFDMA technology, which splits an accessible channel into a several orthogonal sub-channels, called “subcarriers”
Summary
In an underwater constrained environment, existing communication mechanisms consist of single medium and single band technology for transferring data through wireless communication. It is difficult to apply various types of applications underwater. In existing underwater wireless communication systems, it is hard to satisfy the real time performance and reliability requirements while maintaining the connection with various heterogeneous networks beyond the application domain. In order to overcome this, a method for bundling underwater wireless media and underwater wireless bands which can adapt with the existing communication is proposed. Based on the characteristics of each medium such as acoustic, optical, IR, Magnetic Field (MFAN), etc., the adaptation layer for underwater multi-media/multi-band is proposed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.