Abstract
Automatic program repair (APR) is crucial to improve software quality. Recently, neural machine translation (NMT) based modeling for bug fixes has demonstrated great potential. However, these approaches still have two major challenges. One is that their search space is limited due to the out-of-vocabulary (OOV) problem. The other is that the NMT-based APR models tend to ignore past translation information, which often leads to over-translation and under-translation. To address the above challenges, we propose MNRepair, a new NMT-based APR approach that combines multiple mechanisms to fix bugs in source code. Specifically, we devise an encoder-decoder NMT framework with the attention mechanism. Our framework combines the copy mechanism to overcome the OOV problem that occurs with source code. To deal with the over-translation and under-translation, we utilize a coverage mechanism to record past translation information. MNRepair is able to capture a wide range of repair operators and fix 26 bugs in Defects4J. Our evaluation shows the effectiveness of multiple mechanisms in the repair process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.