Abstract

The structures in thermal environment often suffer from severe thermal expansion, potentially leading to buckling failure. This study aims to address this issue by proposing multi-material topology optimization for thermomechanical buckling problems. The density-based model with the rational approximation of material properties (RAMP) is adopted here for parameterization of multiple materials. The sensitivities of thermomechanical compliance and buckling are derived through the adjoint technique. The globally convergent version of the method of moving asymptotes (GCMMA) is employed to solve the non-monotonic topology optimization problem. In this study, two numerical examples are presented to illustrate the effectiveness of the proposed method, in which the total volume of multi-materials is minimized subject to thermoelastic compliance and buckling constraints. The examples exhibit significant difference in the final topologies for mechanical buckling and thermomechanical buckling optimization. The study demonstrates the importance of thermomechanical buckling criteria for the design of structures operating in a temperature-varying environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call