Abstract
Topology optimization of multi-material structure has a larger design space compared with single material optimization, and it also requires efficient material selection methods to provide references for designers. The multi-material additive manufacturing ensures the manufacturability of topology design of multi-material structures, but also puts forward new manufacturability requirements, such as the minimum size of multi-material and the connection interface. This paper focuses on the development of a topology optimization algorithm for multi-material structures under the total mass constraint based on discrete variables. Recursive multiphase materials interpolation (RMMI) scheme is utilized to establish the relationship between discrete design variables and element elastic modulus and density, and sequential approximate integer programming (SAIP) and canonical relaxation algorithms are constructed to update the discrete design variables. It is shown that this method can obtain multi-material topology design with clear interface display, and has the ability of free material coexistence and degradation, which indicates that the discrete variables have more advantages than the continuous variables in the RMMI scheme. Based on this, the material selection under mass constraints is discussed in depth, and it is pointed out that the traditional determination of material coexistence or degradation in design based on specific stiffness has limitations. Thus, the present work expands the necessary conditions of material coexistence. Then, a minimum size control method of multi-material design based on post-processing is proposed to solve the minimum size geometry constraint problem by SAIP. Numerical examples show that this method can not only precisely control the minimum size of each material phase (including void phase), but also resolve the problem of interface and boundary diffusion of the multi-material phase, and significantly improve the manufacturability of multi-material design. Finally, it is applied to optimization problems with complex design domain and irregular meshes which are closer to engineering design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.