Abstract

In this paper, a multi-material radial phononic crystal (M-RPC) structure is proposed to reduce the anchor-point loss of piezoelectric micro-electro-mechanical system (MEMS) resonators and improve their quality factor. Compared with single-material phononic crystal structures, an M-RPC structure can reduce the strength damage at the anchor point of a resonator due to the etching of the substrate. The dispersion curve and frequency transmission response of the M-RPC structure were calculated by applying the finite element method, and it was shown that the M-RPC structure was more likely to produce a band-gap range with strong attenuation compared with a single-material radial phononic crystal (S-RPC) structure. Then, the effects of different metal-silicon combinations on the band gap of the M-RPC structures were studied, and we found that the largest band-gap range was produced by a Pt and Si combination, and the range was 84.1-118.3 MHz. Finally, the M-RPC structure was applied to a piezoelectric MEMS resonator. The results showed that the anchor quality factor of the M-RPC resonator was increased by 33.5 times compared with a conventional resonator, and the insertion loss was reduced by 53.6%. In addition, the loaded and unloaded quality factors of the M-RPC resonator were improved by 75.7% and 235.0%, respectively, and at the same time, there was no effect on the electromechanical coupling coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.