Abstract

Multi-mass velocity-map imaging (VMI) is becoming established as a promising method for probing the dynamics of a variety of gas-phase chemical processes. We provide an overview of velocity-map imaging and multi-mass velocity-map imaging techniques, highlighting examples in which these approaches have been used to provide mechanistic insights into a range of photoinduced and electron-induced chemical processes. Multi-mass detection capabilities have also led to the development of two new tools for the chemical dynamics toolbox, in the form of Coulomb-explosion imaging and covariance-map imaging. These allow details of molecular structure to be followed in real time over the course of a chemical reaction, offering the tantalising prospect of recording real-time 'molecular movies' of chemical dynamics. As these new methods become established within the reaction dynamics community, they promise new mechanistic insights into chemistry relevant to fields ranging from atmospheric chemistry and astrochemistry through to synthetic organic photochemistry and biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.