Abstract
Metal-organic frameworks (MOFs) have attracted tremendous attention for several novel applications. However, functional MOFs with light-responsive circularly polarized luminescence (CPL) are not examined in detail. Therefore, a dual CPL switch exhibiting both upconversion (UC) and downshifting (DS) CPL in the solid state is constructed by loading a luminescent diarylethene derivative (DAEC) and UC nanoparticles (UCNPs) into chiral MOFs. The chiral MOF⊃DAEC composites exhibit both photoswitchable luminescence and DS-CPL properties under alternating UV and visible light irradiation. Additionally, a reversible UC-CPL switch is realized using near-infrared (NIR) and visible light irradiation by introducing energy-level-matched UCNPs and DAEC into the chiral MOFs. The dissymmetry factor (glum ) of UC-CPL is noted to be significantly amplified through energy transfer compared to that of DS-CPL, which indicates that the information on circular polarization can be manipulated by altering the incident light. A chiroptical logic circuit with a 2D information output is designed with UV, visible, and NIR light as inputs by setting a rational threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.