Abstract

The internet of things (IoT) is able to provide a prediction of linked, universal, and smart nodes that have autonomous interaction when they present services. Because of wide openness, relatively high processing power, and wide distribution of IoT things, they are ideal for attacks of the gray hole. In the gray hole attack, the attacker fakes itself as the shortest path to the destination that is a thing here. This causes the routing packets not to reach the destination. The proposed method is based on the AODV routing protocol and is presented under the MTISS-IoT name which means for the reduction of gray hole attacks using check node information. In this paper, a hybrid approach is proposed based on cryptographic authentication. The proposed approach consists of four phases, such as the verifying node trust in the IoT, testing the routes, gray hole attack discovery, and the malicious attack elimination process in MTISS-IoT. The method is evaluated here via extensive simulations carried out in the NS-3 environment. The experimental results of four scenarios demonstrated that the MTISS-IoT method can achieve a false positive rate of 14.104%, a false negative rate of 17.49%, and a detection rate of 94.5% when gray hole attack was launched.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.