Abstract

Classical clustering protocols in wireless sensor networks (WSNs) assume that all nodes are equipped with the same amount of energy. As a result, they cannot take full advantage of the presence of node heterogeneity. In this study, a stable and energy-efficient clustering (SEEC) protocol for heterogeneous WSNs is proposed. In addition, the extension to multi-level of SEEC is presented. It depends on the network structure that is divided into clusters. Each cluster has a powerful advanced node and some normal nodes deployed randomly in this cluster. In the multi-level architectures, more powerful supper nodes are assigned to cover distant sensing areas. Each type of nodes has its role in the sensing, aggregation or transmission to the base station. At each level of heterogeneity, the optimum number of powerful nodes that achieves the minimum energy consumption of the network is obtained. The proposed protocol is a heterogeneous awareness to prolong the stability period, which is crucial for many applications. The performance of the proposed protocol is compared by existing homogeneous and heterogeneous protocols. Simulation results show that the proposed protocol provides a longer stability period, more energy efficiency and higher average throughput than the existing protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.