Abstract

Objective. Automatic segmentation of fundus vessels has the potential to enhance the judgment ability of intelligent disease diagnosis systems. Even though various methods have been proposed, it is still a demanding task to accurately segment the fundus vessels. The purpose of our study is to develop a robust and effective method to segment the vessels in human color retinal fundus images. Approach. We present a novel multi-level spatial-temporal and attentional information deep fusion network for the segmentation of retinal vessels, called MSAFNet, which enhances segmentation performance and robustness. Our method utilizes the multi-level spatial-temporal encoding module to obtain spatial-temporal information and the Self-Attention module to capture feature correlations in different levels of our network. Based on the encoder and decoder structure, we combine these features to get the final segmentation results. Main results. Through abundant experiments on four public datasets, our method achieves preferable performance compared with other SOTA retinal vessel segmentation methods. Our Accuracy and Area Under Curve achieve the highest scores of 96.96%, 96.57%, 96.48% and 98.78%, 98.54%, 98.27% on DRIVE, CHASE_DB1, and HRF datasets. Our Specificity achieves the highest score of 98.58% and 99.08% on DRIVE and STARE datasets. Significance. The experimental results demonstrate that our method has strong learning and representation capabilities and can accurately detect retinal blood vessels, thereby serving as a potential tool for assisting in diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call