Abstract

Background: Segmenting an image into multiple regions is a pre-processing phase of computer vision. For the same, determining an optimal set of thresholds is a challenging problem. Objective: This paper introduces a novel multi-level thresholding based image segmentation method. Methods: The presented method uses a novel variant of whale optimization algorithm to determine the optimal thresholds. For experimental validation of the proposed variant, twenty-three benchmark functions are considered. To analyze the efficacy of new multi-level image segmentation method, images from Berkeley Segmentation Dataset and Benchmark (BSDS300) have been considered and tested against recent multi-level image segmentation methods. Conclusion: Experiments arm that the presented method is efficient and competitive than the existing multi-level image segmentation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.