Abstract

The healthcare sector's use of cyber-physical systems to provide high-quality patient treatment highlights the need for sophisticated security solutions due to the wide range of attack surfaces from medical and mobile devices, as well as body sensor nodes. Cyber-physical systems have various processing technologies to choose from, but these technical methods are as varied. Existing technologies are not well-suited for managing complex information about problem identification and diagnosis, which is distinct from technology. To address this issue, intelligent techniques for fusion processing, such as multi-sensor fusion system architectures and fusion optimization, can be used to improve fusion score and decision-making. Additionally, the use of deep learning models and multimedia data fusion applications can help to combine multiple models for intelligent systems and enhance machine learning for data fusion in E-Systems and cloud environments. Fuzzy approaches and optimization algorithms for data fusion can also be applied to robotics and other applications.. In this paper, a computer vision technology-based fault detection (CVT-FD) framework has been suggested for securely sharing healthcare data. When utilizing a trusted device like a mobile phone, end-users can rest assured that their data is secure. Cyber-attack behavior can be predicted using an artificial neural network (ANN), and the analysis of this data can assist healthcare professionals in making decisions. The experimental findings show that the model outperforms with current detection accuracy (98.3%), energy consumption (97.2%), attack prediction (96.6%), efficiency (97.9%), and delay ratios (35.6%) over existing approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call