Abstract
The study of myiasis is important because they may cause problems to the livestock industry, public health, or wildlife conservation. The ecology of parasitic dipterans that cause myiasis is singular, as they actively seek their hosts over relatively long distances. However, studies that address the determinants of myiasis dynamics are very scarce. The genus Philornis include species that may be excellent models to study myiasis ecology, as they exclusively parasitize bird nestlings, which stay in their nests until they are fully fledged, and larvae remain at the point of entry until the parasitic stage is over, thus allowing the collection of sequential individual-level infection data from virtually all the hosts present at a particular area. Here we offer a stratified multi-level analysis of longitudinal data of Philornis torquans parasitism in replicated forest bird communities of central Argentina. Using Generalized Linear Models and Generalized Linear Mixed Models and an information theory approach for model selection, we conducted four groups of analyses, each with a different study unit, the individual, the brood, the community at a given week, and the community at a given year. The response variable was larval abundance per nestling or mean abundance per nestling. At each level, models included the variables of interest of that particular level, and also potential confounders and effect modifiers of higher levels. We found associations of large magnitude at all levels, but only few variables truly governed the dynamics of this parasite. At the individual level, the infection was determined by the species and the age of the host. The main driver of parasite abundance at the microhabitat level was the average height of the forest, and at the community level, the density of hosts and prior rainfall. This multi-level approach contributed to a better understanding of the ecology of myiasis.
Highlights
A vast variety of dipterans affects the health of animals, including humans, either by acting as disease vectors [1,2] or through parasitism [3]
Parasites that cause myiasis are among those that actively seek their hosts over relatively long distances, which results in a particular life-cycle and natural history
Myiasis ecology studies that jointly encompass the analysis of several factors at different levels of biological hierarchy would provide us with a better understanding of the web of causation behind myiasis dynamics, describing the relative contribution of each variable while enabling the assessment of interactions between factors at different levels
Summary
A vast variety of dipterans affects the health of animals, including humans, either by acting as disease vectors [1,2] or through parasitism [3]. Some flies with parasitic immature stages cause myiasis, a tegument or cavity infection with larvae, which may represent great economic losses for livestock industry (e.g. species of Lucilia [4]), public health concern (e.g. Dermatobia hominis [3]), or contribute to wildlife species declines (e.g. Philornis downsi [5]). Current data available include associations of parasitic dipterans with climatic factors [6,7], host density [7,8], and nest and host characteristics [8,9,10,11]. Myiasis ecology studies that jointly encompass the analysis of several factors at different levels of biological hierarchy would provide us with a better understanding of the web of causation behind myiasis dynamics, describing the relative contribution of each variable while enabling the assessment of interactions between factors at different levels
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.