Abstract

This paper investigates non-coherent detection of single-input multiple-output (SIMO) systems over block Rayleigh fading channels. Using the Kullback-Leibler divergence as the design criterion, we formulate a multiple-symbol constellation optimization problem, which turns out to have high computational complexity to construct and detect. We exploit the structure of the formulated problem and decouple it into a unitary constellation design and a multi-level design. The proposed multi-level design has low complexity in both construction and detection. Simulation results show that our multi-level design has better performance than traditional pilot-based schemes and other existing low-complexity multi-level designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.