Abstract
In a circular economy perspective, the development of fast and efficient sensor-based recognition strategies of plastic waste, not only by polymer but also by color, plays a crucial role for the production of high quality secondary raw materials in recycling plants. In this work, mixed colored flakes of high-density polyethylene (HDPE) from packaging waste were simultaneously classified by hyperspectral imaging working in the visible range (400–750 nm), combined with machine learning. Two classification models were built and compared: (1) Partial Least Square-Discriminant Analysis (PLS-DA) for 6 HDPE macro-color classes identification (i.e., white, blue, green, red, orange and yellow) and (2) hierarchical PLS-DA for a more accurate discrimination of the different HDPE color tones, providing as output 14 color classes. The obtained classification results were excellent for both models, with values of Recall, Specificity, Accuracy, and F-score in prediction close to 1. The proposed methodological approach can be utilized as sensor-based sorting logic in plastic recycling plants, tuning the output based on the required needs of the recycling plant, allowing to obtain a high-quality recycled HDPE of different colors, optimizing the plastic recycling process, in agreement with the principles of circular economy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.