Abstract

The ground is typically hidden by cloud and snow in satellite images, which have a similar visible spectrum and complex spatial distribution characteristics. The detection of cloud and snow is important for increasing image availability and studying climate change. To address the issues of the low classification accuracy and poor generalization effect by the traditional threshold method, as well as the problems of the misdetection of overlapping regions, rough segmentation results, and a loss of boundary details in existing algorithms, this paper designed a Multi-level Attention Interaction Network (MAINet). The MAINet uses a modified ResNet50 to extract features and introduces a Detail Feature Extraction module to extract multi-level information and reduce the loss of details. In the last down-sampling, the Deep Multi-head Information Enhancement module combines a CNN and a Transformer structure to make deep semantic features more distinct and reduce redundant information. Then, the Feature Interactive and Fusion Up-sampling module enhances the information extraction of deep and shallow information and, then, guides and aggregates each to make the learned semantic features more comprehensive, which can better recover remote sensing images and increase the prediction accuracy. The MAINet model we propose performed satisfactorily in handling cloud and snow detection and segmentation tasks in multiple scenarios. Experiments on related data sets also showed that the MAINet algorithm exhibited the best performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call