Abstract

The mechanical compression of metal foam flow-field based polymer electrolyte fuel cells (PEFCs) is critical in determining the interfacial contact resistance with gas diffusion layers (GDLs), reactant flow and water management. The distinct scale between the pore structure of metal foams and the entire flow-field warrant a multi-length scale characterization that combines ex-situ tests of compressed metal foam samples and in-operando analysis of operating PEFCs using X-ray computed tomography (CT) and neutron radiography. An optimal ‘medium’ compression was found to deliver a peak power density of 853 mW cm−2. The X-ray CT data indicates that the compression process significantly decreases the mean pore size and narrows the pore size distribution of metal foams. Simulation results suggest compressing metal foam increases the pressure drop and gas velocity, improving the convective liquid water removal. This is in agreement with the neutron imaging results that demonstrates an increase in the mass of accumulated liquid water with minimum compression compared to the medium and maximum compression cases. The results show that a balance between Ohmic resistance, water removal capacity and parasitic power is imperative for the optimal performance of metal foam based PEFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.