Abstract

The all IP nature of the next generation (5G) networks is going to open a lot of doors for new vulnerabilities which are going to be challenging in preventing the risk associated with them. Majority of these vulnerabilities might be impossible to detect with simple networking traffic monitoring tools. Intrusion Detection Systems (IDS) which rely on machine learning and artificial intelligence can significantly improve network defense against intruders. This technology can be trained to learn and identify uncommon patterns in massive volume of traffic and notify, using such as alert flags, system administrators for additional investigation. This paper proposes an IDS design which makes use of machine learning algorithms such as Hidden Markov Model (HMM) using a multi-layer approach. This approach has been developed and verified to resolve the common flaws in the application of HMM to IDS commonly referred as the curse of dimensionality. It factors a huge problem of immense dimensionality to a discrete set of manageable and reliable elements. The multi-layer approach can be expanded beyond 2 layers to capture multi-phase attacks over longer spans of time. A pyramid of HMMs can resolve disparate digital events and signatures across protocols and platforms to actionable information where lower layers identify discrete events (such as network scan) and higher layers new states which are the result of multi-phase events of the lower layers. The concepts of this novel approach have been developed but the full potential has not been demonstrated.

Highlights

  • Intrusion Detection Systems have been the subject of a lot of research both in academia and industry in the past few decades as the interest in information security has been growing rapidly

  • A pyramid of Hidden Markov Model (HMM) can resolve disparate digital events and signatures across protocols and platforms to actionable information where lower layers identify discrete events and higher layers new states which are the result of multi-phase events of the lower layers

  • For the simulation of the Layered Hidden Markov Model (LHMM), the two HMMs considered at the lower layer are HTTP and

Read more

Summary

Introduction

Intrusion Detection Systems have been the subject of a lot of research both in academia and industry in the past few decades as the interest in information security has been growing rapidly. Intrusion detection systems come in different flavors and approaches. Based on their points of placement, they can be categorized into network-based intrusion detection system (NIDS) and host-based intrusion detection system (HIDS). A network intrusion detection system (NIDS) is placed at a strategic point in the network such that packets traversing a particular network link can be monitored. NIDSs monitor a given network interface by placing it in promiscuous mode. This will help the IDS in hiding its existence from network attackers while performing the task of network traffic monitoring. Host-based IDSs monitor and reside in individual host machines

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.