Abstract

Unsteady laminar flows and heat transfer of n-immiscible fractional Maxwell fluids in a channel are investigated under influence of time-dependent pressure gradient. The isothermal channel walls have translational motions in their planes with time-dependent velocities. Governing equations of the mathematical model are based on the generalized constitutive equations for shear stress and thermal flux described by the time-fractional Caputo derivative. Analytical and semi-analytical solutions for velocity, shear stress, and temperature fields are obtained by using finite sine-Fourier and Laplace transforms. In the case of semi-analytical solutions, the inverse Laplace transforms are obtained numerically by employing the Talbots algorithms. Using the software Mathcad, numerical calculations have carried out and results are presented in graphical illustrations in order to analyze the memory effects on the fluid temperature and motion. It is found that in fluids with thermal memory the heat transfer is slower compared with the ordinary fluid, while the fractional velocity parameters act as braking/accelerating factors of the fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call