Abstract

An efficient energy management system (EMS) enhances microgrid performance in terms of stability, safety, and economy. Traditional centralized or decentralized energy management systems are unable to meet the increasing demands for autonomous decision-making, privacy protection, global optimization, and rapid collaboration simultaneously. This paper proposes a hierarchical multi-layer EMS for microgrid, comprising supply layer, demand layer, and neutral scheduling layer. Additionally, common mathematical optimization methods struggle with microgrid scheduling decision problem due to challenges in mechanism modeling, supply–demand uncertainty, and high real-time and autonomy requirements. Therefore, an improved proximal policy optimization (PPO) approach is proposed for the multi-layer EMS. Specifically, in the centrally managed supply layer, a centralized PPO algorithm is utilized to determine the optimal power generation strategy. In the decentralized demand layer, an auction market is established, and multi-agent proximal policy optimization (MAPPO) algorithm with an action-guidance-based mechanism is employed for each consumer, to implement individual auction strategy. The neutral scheduling layer interacts with other layers, manages information, and protects participant privacy. Numerical results validate the effectiveness of the proposed multi-layer EMS framework and the PPO-based optimization methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.